Nuprl Lemma : hd_wf

[A:Type]. ∀[l:A List].  hd(l) ∈ supposing ||l|| ≥ 


Proof




Definitions occuring in Statement :  hd: hd(l) length: ||as|| list: List uimplies: supposing a uall: [x:A]. B[x] ge: i ≥  member: t ∈ T natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] or: P ∨ Q ge: i ≥  le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) true: True not: ¬A implies:  Q false: False cons: [a b] top: Top prop:
Lemmas referenced :  list-cases length_of_nil_lemma product_subtype_list length_of_cons_lemma reduce_hd_cons_lemma ge_wf length_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_functionElimination unionElimination sqequalRule productElimination independent_functionElimination natural_numberEquality voidElimination promote_hyp hypothesis_subsumption isect_memberEquality voidEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[l:A  List].    hd(l)  \mmember{}  A  supposing  ||l||  \mgeq{}  1 



Date html generated: 2016_05_14-AM-06_34_28
Last ObjectModification: 2015_12_26-PM-00_35_46

Theory : list_0


Home Index