Nuprl Lemma : hd_wf
∀[A:Type]. ∀[l:A List].  hd(l) ∈ A supposing ||l|| ≥ 1 
Proof
Definitions occuring in Statement : 
hd: hd(l), 
length: ||as||, 
list: T List, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
ge: i ≥ j , 
member: t ∈ T, 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
or: P ∨ Q, 
ge: i ≥ j , 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
true: True, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
cons: [a / b], 
top: Top, 
prop: ℙ
Lemmas referenced : 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
reduce_hd_cons_lemma, 
ge_wf, 
length_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
sqequalRule, 
productElimination, 
independent_functionElimination, 
natural_numberEquality, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
isect_memberEquality, 
voidEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[l:A  List].    hd(l)  \mmember{}  A  supposing  ||l||  \mgeq{}  1  
 Date html generated: 
2016_05_14-AM-06_34_28
 Last ObjectModification: 
2015_12_26-PM-00_35_46
Theory : list_0
Home
Index