Nuprl Lemma : better-gcd_wf

[x,y:ℤ].  (better-gcd(x;y) ∈ ℤ)


Proof




Definitions occuring in Statement :  better-gcd: better-gcd(a;b) uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  better-gcd-gcd gcd_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry intEquality isect_memberEquality because_Cache

Latex:
\mforall{}[x,y:\mBbbZ{}].    (better-gcd(x;y)  \mmember{}  \mBbbZ{})



Date html generated: 2016_05_13-PM-03_37_05
Last ObjectModification: 2015_12_26-AM-09_41_53

Theory : arithmetic


Home Index