Nuprl Lemma : better-gcd_wf
∀[x,y:ℤ].  (better-gcd(x;y) ∈ ℤ)
Proof
Definitions occuring in Statement : 
better-gcd: better-gcd(a;b)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
better-gcd-gcd, 
gcd_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[x,y:\mBbbZ{}].    (better-gcd(x;y)  \mmember{}  \mBbbZ{})
Date html generated:
2016_05_13-PM-03_37_05
Last ObjectModification:
2015_12_26-AM-09_41_53
Theory : arithmetic
Home
Index