Nuprl Lemma : list-value-type

[T:Type]. value-type(T List)


Proof




Definitions occuring in Statement :  list: List value-type: value-type(T) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T list: List so_lambda: λ2x.t[x] uimplies: supposing a nat: so_apply: x[s] value-type: value-type(T) has-value: (a)↓ prop:
Lemmas referenced :  set-value-type colist_wf has-value_wf-partial nat_wf le_wf int-value-type colength_wf colist-value-type equal-wf-base list_wf base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality independent_isectElimination intEquality natural_numberEquality cumulativity isect_memberEquality axiomSqleEquality because_Cache equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  value-type(T  List)



Date html generated: 2016_05_14-AM-06_25_46
Last ObjectModification: 2015_12_26-PM-00_42_22

Theory : list_0


Home Index