Nuprl Lemma : colist-value-type
∀[T:Type]. value-type(colist(T))
Proof
Definitions occuring in Statement : 
colist: colist(T)
, 
value-type: value-type(T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
unit: Unit
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
value-type: value-type(T)
, 
has-value: (a)↓
, 
prop: ℙ
Lemmas referenced : 
value-type_functionality, 
colist_wf, 
b-union_wf, 
unit_wf2, 
colist-ext, 
bunion-value-type, 
equal-value-type, 
product-value-type, 
equal-wf-base, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productEquality, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
sqequalRule, 
intEquality, 
natural_numberEquality, 
because_Cache, 
lambdaEquality, 
isect_memberEquality, 
axiomSqleEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  value-type(colist(T))
Date html generated:
2016_05_14-AM-06_25_23
Last ObjectModification:
2015_12_26-PM-00_42_31
Theory : list_0
Home
Index