Nuprl Lemma : product-value-type

[A:Type]. ∀[B:A ⟶ Type].  value-type(a:A × B[a])


Proof




Definitions occuring in Statement :  value-type: value-type(T) uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T value-type: value-type(T) uimplies: supposing a sq_stable: SqStable(P) implies:  Q so_apply: x[s] all: x:A. B[x] has-value: (a)↓ prop: squash: T
Lemmas referenced :  sq_stable__has-value equal_wf equal-wf-base base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination equalityTransitivity equalitySymmetry productEquality cumulativity applyEquality functionExtensionality lambdaFormation productElimination sqequalRule sqleReflexivity dependent_functionElimination imageMemberEquality baseClosed imageElimination because_Cache isect_memberEquality axiomSqleEquality functionEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    value-type(a:A  \mtimes{}  B[a])



Date html generated: 2017_04_14-AM-07_14_52
Last ObjectModification: 2017_02_27-PM-02_50_18

Theory : call!by!value_1


Home Index