Nuprl Lemma : product-value-type
∀[A:Type]. ∀[B:A ⟶ Type]. value-type(a:A × B[a])
Proof
Definitions occuring in Statement :
value-type: value-type(T)
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
function: x:A ⟶ B[x]
,
product: x:A × B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
value-type: value-type(T)
,
uimplies: b supposing a
,
sq_stable: SqStable(P)
,
implies: P
⇒ Q
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
has-value: (a)↓
,
prop: ℙ
,
squash: ↓T
Lemmas referenced :
sq_stable__has-value,
equal_wf,
equal-wf-base,
base_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
independent_functionElimination,
equalityTransitivity,
equalitySymmetry,
productEquality,
cumulativity,
applyEquality,
functionExtensionality,
lambdaFormation,
productElimination,
sqequalRule,
sqleReflexivity,
dependent_functionElimination,
imageMemberEquality,
baseClosed,
imageElimination,
because_Cache,
isect_memberEquality,
axiomSqleEquality,
functionEquality,
universeEquality
Latex:
\mforall{}[A:Type]. \mforall{}[B:A {}\mrightarrow{} Type]. value-type(a:A \mtimes{} B[a])
Date html generated:
2017_04_14-AM-07_14_52
Last ObjectModification:
2017_02_27-PM-02_50_18
Theory : call!by!value_1
Home
Index