Nuprl Lemma : value-type_functionality

[T,T':Type].  value-type(T) ⇐⇒ value-type(T') supposing T ≡ T'


Proof




Definitions occuring in Statement :  value-type: value-type(T) ext-eq: A ≡ B uimplies: supposing a uall: [x:A]. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  value-type: value-type(T) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q implies:  Q subtype_rel: A ⊆B guard: {T} has-value: (a)↓ prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q
Lemmas referenced :  ext-eq_inversion subtype_rel_weakening equal-wf-base base_wf uall_wf isect_wf has-value_wf_base ext-eq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation lambdaFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination equalityTransitivity equalitySymmetry applyEquality lemma_by_obid axiomSqleEquality because_Cache isect_memberEquality lambdaEquality productElimination independent_pairEquality dependent_functionElimination universeEquality

Latex:
\mforall{}[T,T':Type].    value-type(T)  \mLeftarrow{}{}\mRightarrow{}  value-type(T')  supposing  T  \mequiv{}  T'



Date html generated: 2016_05_13-PM-03_24_16
Last ObjectModification: 2015_12_26-AM-09_30_25

Theory : call!by!value_1


Home Index