Nuprl Lemma : value-type_functionality
∀[T,T':Type]. value-type(T)
⇐⇒ value-type(T') supposing T ≡ T'
Proof
Definitions occuring in Statement :
value-type: value-type(T)
,
ext-eq: A ≡ B
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
iff: P
⇐⇒ Q
,
universe: Type
Definitions unfolded in proof :
value-type: value-type(T)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
subtype_rel: A ⊆r B
,
guard: {T}
,
has-value: (a)↓
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
rev_implies: P
⇐ Q
Lemmas referenced :
ext-eq_inversion,
subtype_rel_weakening,
equal-wf-base,
base_wf,
uall_wf,
isect_wf,
has-value_wf_base,
ext-eq_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
independent_pairFormation,
lambdaFormation,
hypothesis,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
independent_isectElimination,
equalityTransitivity,
equalitySymmetry,
applyEquality,
lemma_by_obid,
axiomSqleEquality,
because_Cache,
isect_memberEquality,
lambdaEquality,
productElimination,
independent_pairEquality,
dependent_functionElimination,
universeEquality
Latex:
\mforall{}[T,T':Type]. value-type(T) \mLeftarrow{}{}\mRightarrow{} value-type(T') supposing T \mequiv{} T'
Date html generated:
2016_05_13-PM-03_24_16
Last ObjectModification:
2015_12_26-AM-09_30_25
Theory : call!by!value_1
Home
Index