Nuprl Lemma : eager_map_cons_lemma
∀v,u,f:Top.  (eager-map(f;[u / v]) ~ eval x = f u in eval r = eager-map(f;v) in   [x / r])
Proof
Definitions occuring in Statement : 
eager-map: eager-map(f;as)
, 
cons: [a / b]
, 
callbyvalue: callbyvalue, 
top: Top
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
eager-map: eager-map(f;as)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
member: t ∈ T
, 
top: Top
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
list_ind_cons_lemma, 
istype-void, 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
Error :isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
Error :inhabitedIsType, 
hypothesisEquality
Latex:
\mforall{}v,u,f:Top.    (eager-map(f;[u  /  v])  \msim{}  eval  x  =  f  u  in  eval  r  =  eager-map(f;v)  in      [x  /  r])
Date html generated:
2019_06_20-PM-00_38_57
Last ObjectModification:
2019_02_28-PM-01_04_47
Theory : list_0
Home
Index