Nuprl Lemma : accumulate_abort_wf

[A,B:Type]. ∀[s:B?]. ∀[F:A ⟶ B ⟶ (B?)]. ∀[L:A List].
  accumulate_abort(x,sofar.F[x;sofar];s;L) ∈ B? supposing valueall-type(B)


Proof




Definitions occuring in Statement :  accumulate_abort: accumulate_abort(x,sofar.F[x; sofar];s;L) list: List valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] unit: Unit member: t ∈ T function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a accumulate_abort: accumulate_abort(x,sofar.F[x; sofar];s;L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q unit: Unit
Lemmas referenced :  eager-accum_wf unit_wf2 union-valueall-type equal-valueall-type valueall-type_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality unionEquality hypothesis lambdaEquality unionElimination applyEquality inrEquality because_Cache independent_isectElimination independent_functionElimination intEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[s:B?].  \mforall{}[F:A  {}\mrightarrow{}  B  {}\mrightarrow{}  (B?)].  \mforall{}[L:A  List].
    accumulate\_abort(x,sofar.F[x;sofar];s;L)  \mmember{}  B?  supposing  valueall-type(B)



Date html generated: 2016_05_14-AM-06_55_57
Last ObjectModification: 2015_12_26-PM-01_15_09

Theory : omega


Home Index