Nuprl Lemma : accumulate_abort_wf
∀[A,B:Type]. ∀[s:B?]. ∀[F:A ⟶ B ⟶ (B?)]. ∀[L:A List].
  accumulate_abort(x,sofar.F[x;sofar];s;L) ∈ B? supposing valueall-type(B)
Proof
Definitions occuring in Statement : 
accumulate_abort: accumulate_abort(x,sofar.F[x; sofar];s;L)
, 
list: T List
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
unit: Unit
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
accumulate_abort: accumulate_abort(x,sofar.F[x; sofar];s;L)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
unit: Unit
Lemmas referenced : 
eager-accum_wf, 
unit_wf2, 
union-valueall-type, 
equal-valueall-type, 
valueall-type_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
unionEquality, 
hypothesis, 
lambdaEquality, 
unionElimination, 
applyEquality, 
inrEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
intEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[s:B?].  \mforall{}[F:A  {}\mrightarrow{}  B  {}\mrightarrow{}  (B?)].  \mforall{}[L:A  List].
    accumulate\_abort(x,sofar.F[x;sofar];s;L)  \mmember{}  B?  supposing  valueall-type(B)
Date html generated:
2016_05_14-AM-06_55_57
Last ObjectModification:
2015_12_26-PM-01_15_09
Theory : omega
Home
Index