Nuprl Lemma : subtype_rel_union
∀[A,B,C,D:Type].  ((A + B) ⊆r (C + D)) supposing ((B ⊆r D) and (A ⊆r C))
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
unionElimination, 
thin, 
inlEquality, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalHypSubstitution, 
sqequalRule, 
inrEquality, 
because_Cache, 
unionEquality, 
axiomEquality, 
lemma_by_obid, 
isectElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[A,B,C,D:Type].    ((A  +  B)  \msubseteq{}r  (C  +  D))  supposing  ((B  \msubseteq{}r  D)  and  (A  \msubseteq{}r  C))
Date html generated:
2016_05_13-PM-03_18_42
Last ObjectModification:
2015_12_26-AM-09_08_21
Theory : subtype_0
Home
Index