Nuprl Lemma : sq_stable__all

[A:Type]. ∀[P:A ⟶ ℙ].  ((∀x:A. SqStable(P[x]))  SqStable(∀x:A. P[x]))


Proof




Definitions occuring in Statement :  sq_stable: SqStable(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  sq_stable: SqStable(P) uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] squash: T
Lemmas referenced :  squash_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality applyEquality hypothesis functionEquality Error :functionIsType,  Error :universeIsType,  universeEquality dependent_functionElimination independent_functionElimination imageElimination imageMemberEquality baseClosed

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:A.  SqStable(P[x]))  {}\mRightarrow{}  SqStable(\mforall{}x:A.  P[x]))



Date html generated: 2019_06_20-AM-11_15_23
Last ObjectModification: 2018_09_26-AM-09_59_31

Theory : core_2


Home Index