Nuprl Lemma : satisfiable_int_formula_dnf

fmla:int_formula()
  (satisfiable_int_formula(fmla) ⇐⇒ (∃X∈int_formula_dnf(fmla). satisfiable_polynomial_constraints(X)))


Proof




Definitions occuring in Statement :  int_formula_dnf: int_formula_dnf(fmla) satisfiable_polynomial_constraints: satisfiable_polynomial_constraints(X) satisfiable_int_formula: satisfiable_int_formula(fmla) int_formula: int_formula() l_exists: (∃x∈L. P[x]) all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] l_exists: (∃x∈L. P[x]) satisfiable_polynomial_constraints: satisfiable_polynomial_constraints(X) int_seg: {i..j-} uimplies: supposing a sq_stable: SqStable(P) lelt: i ≤ j < k squash: T
Lemmas referenced :  int_formula_prop_wf and_wf l_exists_iff sq_stable__le select_wf satisfies-poly-constraints_wf satisfies_int_formula_dnf int_formula_wf l_member_wf satisfiable_polynomial_constraints_wf int_formula_dnf_wf polynomial-constraints_wf l_exists_wf satisfiable_int_formula_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality setElimination rename setEquality productElimination dependent_functionElimination independent_functionElimination dependent_pairFormation independent_isectElimination natural_numberEquality introduction imageMemberEquality baseClosed imageElimination because_Cache

Latex:
\mforall{}fmla:int\_formula()
    (satisfiable\_int\_formula(fmla)
    \mLeftarrow{}{}\mRightarrow{}  (\mexists{}X\mmember{}int\_formula\_dnf(fmla).  satisfiable\_polynomial\_constraints(X)))



Date html generated: 2016_05_14-AM-07_09_50
Last ObjectModification: 2016_01_14-PM-08_41_03

Theory : omega


Home Index