Nuprl Lemma : satisfies_int_formula_dnf

fmla:int_formula(). ∀f:ℤ ⟶ ℤ.
  (int_formula_prop(f;fmla) ⇐⇒ (∃X∈int_formula_dnf(fmla). satisfies-poly-constraints(f;X)))


Proof




Definitions occuring in Statement :  int_formula_dnf: int_formula_dnf(fmla) satisfies-poly-constraints: satisfies-poly-constraints(f;X) int_formula_prop: int_formula_prop(f;fmla) int_formula: int_formula() l_exists: (∃x∈L. P[x]) all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T prop: so_apply: x[s] implies:  Q all: x:A. B[x] int_formula_dnf: int_formula_dnf(fmla) top: Top intformless: (left "<right) int_formula_ind: int_formula_ind satisfies-poly-constraints: satisfies-poly-constraints(f;X) int_term_to_ipoly: int_term_to_ipoly(t) itermSubtract: left (-) right int_term_ind: int_term_ind itermAdd: left (+) right itermConstant: "const" iff: ⇐⇒ Q and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a iPolynomial: iPolynomial() rev_implies:  Q subtype_rel: A ⊆B polynomial-constraints: polynomial-constraints() intformle: left "≤right intformeq: left "=" right intformand: left "∧right int_formula_prop: int_formula_prop(f;fmla) intformor: left "or" right intformimplies: left "=>right intformnot: "form guard: {T} iMonomial: iMonomial() int_nzero: -o true: True nequal: a ≠ b ∈  not: ¬A sq_type: SQType(T) false: False sorted: sorted(L) int_seg: {i..j-} sq_stable: SqStable(P) lelt: i ≤ j < k squash: T exists: x:A. B[x] le: A ≤ B less_than': less_than'(a;b) subtract: m const-poly: const-poly(n) int_term_value: int_term_value(f;t) itermMinus: "-"num nat_plus: + less_than: a < b decidable: Dec(P) or: P ∨ Q l_exists: (∃x∈L. P[x]) l_all: (∀x∈L.P[x])
Lemmas referenced :  int_formula-induction all_wf iff_wf int_formula_prop_wf l_exists_wf polynomial-constraints_wf int_formula_dnf_wf satisfies-poly-constraints_wf l_member_wf int_formula_wf int_formula_prop_less_lemma l_all_nil_iff l_all_single iPolynomial_wf int_term_to_ipoly_wf itermSubtract_wf itermAdd_wf itermConstant_wf le_wf int_term_value_wf ipolynomial-term_wf equal_wf l_all_wf_nil l_all_wf cons_wf nil_wf less_than_wf true_wf l_exists_single subtype_rel_product list_wf subtype_rel_list subtype_rel_self int_term_wf int_formula_prop_le_lemma int_formula_prop_eq_lemma equal-wf-T-base int_formula_prop_and_lemma int_formula_prop_or_lemma int_formual_prop_imp_lemma int_formula_prop_not_lemma add_ipoly-sq minus-poly_wf add_ipoly_wf iMonomial_wf subtype_base_sq int_subtype_base equal-wf-base nequal_wf le_weakening2 select_wf sq_stable__le less_than_transitivity2 length_wf length_of_nil_lemma less_than_transitivity1 less_than_irreflexivity int_seg_wf sorted_wf length_of_cons_lemma less-iff-le add_functionality_wrt_le add-associates zero-add add-swap add-commutes le-add-cancel2 imonomial-less_wf minus-one-mul one-mul add-mul-special two-mul mul-distributes-right zero-mul minus-zero add-zero omega-shadow int_seg_properties squash_wf int_term_value_functionality add-ipoly_wf1 add-ipoly_wf const-poly_wf add-ipoly-equiv iff_weakening_equal itermMinus_wf add_functionality_wrt_eq minus-poly-equiv minus_functionality_wrt_eq int_term_polynomial const-poly-value minus-add add-is-int-iff minus-is-int-iff subtract_wf le_reflexive minus-one-mul-top not-le-2 mul-distributes mul-associates le-add-cancel not-lt-2 minus-minus mul-commutes le-add-cancel-alt decidable__le decidable__lt int_term_value_minus_lemma itermMinus_functionality and-poly-constraints_wf satisfies-and-poly-constraints or_wf l_exists_append append_wf negate-poly-constraints_wf not_wf satisfies-negate-poly-constraints decidable__exists_int_seg decidable__and2 decidable__all_int_seg decidable__equal_int not-l_exists
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin sqequalRule lambdaEquality functionEquality intEquality functionExtensionality applyEquality hypothesisEquality hypothesis setElimination rename setEquality independent_functionElimination lambdaFormation dependent_functionElimination isect_memberEquality voidElimination voidEquality addLevel productElimination independent_pairFormation impliesFunctionality independent_isectElimination natural_numberEquality andLevelFunctionality productEquality independent_pairEquality because_Cache baseClosed dependent_set_memberEquality instantiate cumulativity equalityTransitivity equalitySymmetry imageMemberEquality imageElimination dependent_pairFormation promote_hyp addEquality universeEquality minusEquality sqequalIntensionalEquality multiplyEquality baseApply closedConclusion levelHypothesis unionElimination inlFormation inrFormation impliesLevelFunctionality orFunctionality

Latex:
\mforall{}fmla:int\_formula().  \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}.
    (int\_formula\_prop(f;fmla)  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}X\mmember{}int\_formula\_dnf(fmla).  satisfies-poly-constraints(f;X)))



Date html generated: 2017_09_29-PM-05_56_01
Last ObjectModification: 2017_07_26-PM-01_44_42

Theory : omega


Home Index