Nuprl Lemma : l_all_single
∀[T:Type]. ∀t:T. ∀[P:{x:T| x = t ∈ T}  ⟶ ℙ]. ((∀x∈[t].P[x]) 
⇐⇒ P[t])
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x])
, 
cons: [a / b]
, 
nil: []
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
l_all: (∀x∈L.P[x])
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
sq_stable: SqStable(P)
, 
lelt: i ≤ j < k
, 
squash: ↓T
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
less_than: a < b
Lemmas referenced : 
length_of_cons_lemma, 
length_of_nil_lemma, 
all_wf, 
int_seg_wf, 
equal_wf, 
select_wf, 
cons_wf, 
nil_wf, 
sq_stable__le, 
length-singleton, 
select-cons-hd, 
decidable__le, 
false_wf, 
not-le-2, 
less-iff-le, 
condition-implies-le, 
add-commutes, 
minus-add, 
minus-zero, 
zero-add, 
add_functionality_wrt_le, 
add-associates, 
le-add-cancel2, 
lelt_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
isectElimination, 
natural_numberEquality, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
setEquality, 
because_Cache, 
dependent_set_memberEquality, 
cumulativity, 
independent_isectElimination, 
setElimination, 
rename, 
independent_functionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
unionElimination, 
addEquality, 
minusEquality, 
intEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}t:T.  \mforall{}[P:\{x:T|  x  =  t\}    {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}x\mmember{}[t].P[x])  \mLeftarrow{}{}\mRightarrow{}  P[t])
Date html generated:
2017_04_14-AM-08_40_06
Last ObjectModification:
2017_02_27-PM-03_30_52
Theory : list_0
Home
Index