Nuprl Lemma : l_all_single

[T:Type]. ∀t:T. ∀[P:{x:T| t ∈ T}  ⟶ ℙ]. ((∀x∈[t].P[x]) ⇐⇒ P[t])


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) cons: [a b] nil: [] uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  l_all: (∀x∈L.P[x]) all: x:A. B[x] member: t ∈ T top: Top uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a int_seg: {i..j-} sq_stable: SqStable(P) lelt: i ≤ j < k squash: T rev_implies:  Q decidable: Dec(P) or: P ∨ Q not: ¬A false: False uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) true: True less_than: a < b
Lemmas referenced :  length_of_cons_lemma length_of_nil_lemma all_wf int_seg_wf equal_wf select_wf cons_wf nil_wf sq_stable__le length-singleton select-cons-hd decidable__le false_wf not-le-2 less-iff-le condition-implies-le add-commutes minus-add minus-zero zero-add add_functionality_wrt_le add-associates le-add-cancel2 lelt_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation lambdaFormation independent_pairFormation isectElimination natural_numberEquality lambdaEquality applyEquality functionExtensionality hypothesisEquality setEquality because_Cache dependent_set_memberEquality cumulativity independent_isectElimination setElimination rename independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination unionElimination addEquality minusEquality intEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}t:T.  \mforall{}[P:\{x:T|  x  =  t\}    {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}x\mmember{}[t].P[x])  \mLeftarrow{}{}\mRightarrow{}  P[t])



Date html generated: 2017_04_14-AM-08_40_06
Last ObjectModification: 2017_02_27-PM-03_30_52

Theory : list_0


Home Index