Nuprl Lemma : length-singleton
∀[x:Top]. (||[x]|| ~ 1)
Proof
Definitions occuring in Statement : 
length: ||as||
, 
cons: [a / b]
, 
nil: []
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
length_of_cons_lemma, 
length_of_nil_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalTransitivity, 
computationStep, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
sqequalAxiom
Latex:
\mforall{}[x:Top].  (||[x]||  \msim{}  1)
Date html generated:
2016_05_14-AM-06_33_45
Last ObjectModification:
2015_12_26-PM-00_36_30
Theory : list_0
Home
Index