Nuprl Lemma : select-cons-hd
∀[a,as:Top]. ∀[i:ℤ]. [a / as][i] ~ a supposing i ≤ 0
Proof
Definitions occuring in Statement :
select: L[n]
,
cons: [a / b]
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
top: Top
,
le: A ≤ B
,
natural_number: $n
,
int: ℤ
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
select: L[n]
,
subtract: n - m
,
cons: [a / b]
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
less_than: a < b
,
less_than': less_than'(a;b)
,
top: Top
,
true: True
,
squash: ↓T
,
not: ¬A
,
false: False
,
prop: ℙ
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
ifthenelse: if b then t else f fi
,
assert: ↑b
,
le: A ≤ B
Lemmas referenced :
decidable__lt,
lt_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_lt_int,
less_than_wf,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
not-lt-2,
add_functionality_wrt_le,
add-zero,
le-add-cancel,
le_wf,
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
natural_numberEquality,
hypothesis,
unionElimination,
isectElimination,
lambdaFormation,
equalityElimination,
because_Cache,
productElimination,
independent_isectElimination,
lessCases,
sqequalAxiom,
isect_memberEquality,
independent_pairFormation,
voidElimination,
voidEquality,
imageMemberEquality,
baseClosed,
imageElimination,
independent_functionElimination,
dependent_pairFormation,
equalityTransitivity,
equalitySymmetry,
promote_hyp,
instantiate,
cumulativity,
intEquality
Latex:
\mforall{}[a,as:Top]. \mforall{}[i:\mBbbZ{}]. [a / as][i] \msim{} a supposing i \mleq{} 0
Date html generated:
2017_04_14-AM-08_36_35
Last ObjectModification:
2017_02_27-PM-03_28_24
Theory : list_0
Home
Index