Nuprl Lemma : minus_functionality_wrt_eq

[i,j:ℤ].  (-i) (-j) ∈ ℤ supposing j ∈ ℤ


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] minus: -n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop:
Lemmas referenced :  equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut minusEquality hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[i,j:\mBbbZ{}].    (-i)  =  (-j)  supposing  i  =  j



Date html generated: 2016_05_13-PM-03_40_20
Last ObjectModification: 2015_12_26-AM-09_40_27

Theory : arithmetic


Home Index