Nuprl Lemma : int_term_value_functionality
∀[f:ℤ ⟶ ℤ]. ∀[t1,t2:int_term()].  int_term_value(f;t1) = int_term_value(f;t2) ∈ ℤ supposing t1 ≡ t2
Proof
Definitions occuring in Statement : 
equiv_int_terms: t1 ≡ t2
, 
int_term_value: int_term_value(f;t)
, 
int_term: int_term()
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
guard: {T}
, 
equiv_int_terms: t1 ≡ t2
, 
all: ∀x:A. B[x]
Lemmas referenced : 
equiv_int_terms_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination
Latex:
\mforall{}[f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[t1,t2:int\_term()].    int\_term\_value(f;t1)  =  int\_term\_value(f;t2)  supposing  t1  \mequiv{}  t2
Date html generated:
2016_05_14-AM-06_59_54
Last ObjectModification:
2015_12_26-PM-01_12_35
Theory : omega
Home
Index