Nuprl Lemma : int_term_value_functionality

[f:ℤ ⟶ ℤ]. ∀[t1,t2:int_term()].  int_term_value(f;t1) int_term_value(f;t2) ∈ ℤ supposing t1 ≡ t2


Proof




Definitions occuring in Statement :  equiv_int_terms: t1 ≡ t2 int_term_value: int_term_value(f;t) int_term: int_term() uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: guard: {T} equiv_int_terms: t1 ≡ t2 all: x:A. B[x]
Lemmas referenced :  equiv_int_terms_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry dependent_functionElimination

Latex:
\mforall{}[f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[t1,t2:int\_term()].    int\_term\_value(f;t1)  =  int\_term\_value(f;t2)  supposing  t1  \mequiv{}  t2



Date html generated: 2016_05_14-AM-06_59_54
Last ObjectModification: 2015_12_26-PM-01_12_35

Theory : omega


Home Index