Nuprl Lemma : equiv_int_terms_wf

[t1,t2:int_term()].  (t1 ≡ t2 ∈ ℙ)


Proof




Definitions occuring in Statement :  equiv_int_terms: t1 ≡ t2 int_term: int_term() uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T equiv_int_terms: t1 ≡ t2 so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  all_wf equal_wf int_term_value_wf int_term_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality intEquality lambdaEquality hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[t1,t2:int\_term()].    (t1  \mequiv{}  t2  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-AM-06_59_44
Last ObjectModification: 2015_12_26-PM-01_12_45

Theory : omega


Home Index