Nuprl Lemma : equiv_int_terms_wf
∀[t1,t2:int_term()].  (t1 ≡ t2 ∈ ℙ)
Proof
Definitions occuring in Statement : 
equiv_int_terms: t1 ≡ t2
, 
int_term: int_term()
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
equiv_int_terms: t1 ≡ t2
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
equal_wf, 
int_term_value_wf, 
int_term_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
intEquality, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[t1,t2:int\_term()].    (t1  \mequiv{}  t2  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-AM-06_59_44
Last ObjectModification:
2015_12_26-PM-01_12_45
Theory : omega
Home
Index