Nuprl Lemma : add-is-int-iff

[a,b:Base].  uiff(a b ∈ ℤ;(a ∈ ℤ) ∧ (b ∈ ℤ))


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T add: m int: base: Base
Definitions unfolded in proof :  prop: uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  base_wf equal-wf-base
Rules used in proof :  isect_memberEquality productEquality because_Cache hypothesisEquality baseClosed closedConclusion baseApply intEquality isectElimination extract_by_obid equalitySymmetry hypothesis equalityTransitivity axiomEquality independent_pairEquality thin productElimination sqequalHypSubstitution sqequalRule independent_pairFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution callbyvalueAdd callbyvalueInt addEquality

Latex:
\mforall{}[a,b:Base].    uiff(a  +  b  \mmember{}  \mBbbZ{};(a  \mmember{}  \mBbbZ{})  \mwedge{}  (b  \mmember{}  \mBbbZ{}))



Date html generated: 2019_06_20-AM-11_21_55
Last ObjectModification: 2018_10_15-AM-11_17_52

Theory : arithmetic


Home Index