Nuprl Lemma : add-is-int-iff
∀[a,b:Base].  uiff(a + b ∈ ℤ;(a ∈ ℤ) ∧ (b ∈ ℤ))
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
add: n + m
, 
int: ℤ
, 
base: Base
Definitions unfolded in proof : 
prop: ℙ
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
base_wf, 
equal-wf-base
Rules used in proof : 
isect_memberEquality, 
productEquality, 
because_Cache, 
hypothesisEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
intEquality, 
isectElimination, 
extract_by_obid, 
equalitySymmetry, 
hypothesis, 
equalityTransitivity, 
axiomEquality, 
independent_pairEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
sqequalRule, 
independent_pairFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
callbyvalueAdd, 
callbyvalueInt, 
addEquality
Latex:
\mforall{}[a,b:Base].    uiff(a  +  b  \mmember{}  \mBbbZ{};(a  \mmember{}  \mBbbZ{})  \mwedge{}  (b  \mmember{}  \mBbbZ{}))
Date html generated:
2019_06_20-AM-11_21_55
Last ObjectModification:
2018_10_15-AM-11_17_52
Theory : arithmetic
Home
Index