Nuprl Lemma : satisfies-and-poly-constraints

f:ℤ ⟶ ℤ. ∀L2,L1:polynomial-constraints() List.
  ((∃X∈L1. satisfies-poly-constraints(f;X)) ∧ (∃X∈L2. satisfies-poly-constraints(f;X))
  ⇐⇒ (∃X∈and-poly-constraints(L1;L2). satisfies-poly-constraints(f;X)))


Proof




Definitions occuring in Statement :  and-poly-constraints: and-poly-constraints(Xs;Ys) satisfies-poly-constraints: satisfies-poly-constraints(f;X) polynomial-constraints: polynomial-constraints() l_exists: (∃x∈L. P[x]) list: List all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q cand: c∧ B uimplies: supposing a polynomial-constraints: polynomial-constraints() iPolynomial: iPolynomial() int_seg: {i..j-} sq_stable: SqStable(P) lelt: i ≤ j < k squash: T guard: {T} iMonomial: iMonomial() int_nzero: -o sq_type: SQType(T)
Lemmas referenced :  list_wf polynomial-constraints_wf exists_wf l_member_wf satisfies-poly-constraints_wf equal_wf combine-pcs_wf l_exists_wf and-poly-constraints_wf iff_wf l_exists_iff member-and-poly-constraints satisfies-combine-pcs subtype_base_sq product_subtype_base iPolynomial_wf list_subtype_base set_subtype_base iMonomial_wf all_wf int_seg_wf length_wf imonomial-less_wf select_wf sq_stable__le less_than_transitivity2 le_weakening2 int_nzero_wf sorted_wf subtype_rel_self nequal_wf int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis functionEquality intEquality independent_pairFormation productElimination productEquality sqequalRule lambdaEquality hypothesisEquality functionExtensionality applyEquality because_Cache setElimination rename setEquality addLevel impliesFunctionality dependent_functionElimination independent_functionElimination existsFunctionality andLevelFunctionality levelHypothesis existsLevelFunctionality dependent_pairFormation instantiate cumulativity independent_isectElimination natural_numberEquality imageMemberEquality baseClosed imageElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}L2,L1:polynomial-constraints()  List.
    ((\mexists{}X\mmember{}L1.  satisfies-poly-constraints(f;X))  \mwedge{}  (\mexists{}X\mmember{}L2.  satisfies-poly-constraints(f;X))
    \mLeftarrow{}{}\mRightarrow{}  (\mexists{}X\mmember{}and-poly-constraints(L1;L2).  satisfies-poly-constraints(f;X)))



Date html generated: 2017_04_14-AM-09_02_24
Last ObjectModification: 2017_02_27-PM-03_43_49

Theory : omega


Home Index