Nuprl Lemma : satisfies-combine-pcs
∀f:ℤ ⟶ ℤ. ∀A,B:polynomial-constraints().
  (satisfies-poly-constraints(f;combine-pcs(A;B)) ⇐⇒ satisfies-poly-constraints(f;A) ∧ satisfies-poly-constraints(f;B))
Proof
Definitions occuring in Statement : 
combine-pcs: combine-pcs(X;Y), 
satisfies-poly-constraints: satisfies-poly-constraints(f;X), 
polynomial-constraints: polynomial-constraints(), 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
polynomial-constraints: polynomial-constraints(), 
satisfies-poly-constraints: satisfies-poly-constraints(f;X), 
combine-pcs: combine-pcs(X;Y), 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
iPolynomial: iPolynomial(), 
so_apply: x[s], 
rev_implies: P ⇐ Q
Lemmas referenced : 
polynomial-constraints_wf, 
iff_wf, 
append_wf, 
equal_wf, 
l_all_append, 
le_wf, 
ipolynomial-term_wf, 
int_term_value_wf, 
equal-wf-T-base, 
l_member_wf, 
iPolynomial_wf, 
l_all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
cut, 
independent_pairFormation, 
hypothesis, 
productEquality, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
setElimination, 
rename, 
intEquality, 
baseClosed, 
setEquality, 
because_Cache, 
natural_numberEquality, 
addLevel, 
impliesFunctionality, 
dependent_functionElimination, 
independent_functionElimination, 
andLevelFunctionality, 
functionEquality
Latex:
\mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}A,B:polynomial-constraints().
    (satisfies-poly-constraints(f;combine-pcs(A;B))
    \mLeftarrow{}{}\mRightarrow{}  satisfies-poly-constraints(f;A)  \mwedge{}  satisfies-poly-constraints(f;B))
 Date html generated: 
2016_05_14-AM-07_08_11
 Last ObjectModification: 
2016_01_14-PM-08_41_20
Theory : omega
Home
Index