Nuprl Lemma : l_all_append

[T:Type]. ∀[P:T ⟶ ℙ].  ∀L1,L2:T List.  ((∀x∈L1 L2.P[x]) ⇐⇒ (∀x∈L1.P[x]) ∧ (∀x∈L2.P[x]))


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) append: as bs list: List uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T rev_implies:  Q or: P ∨ Q prop: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  member_append l_member_wf all_wf append_wf l_all_iff l_all_wf iff_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut independent_pairFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination introduction extract_by_obid isectElimination because_Cache productElimination inlFormation sqequalRule inrFormation lambdaEquality functionEquality applyEquality unionElimination productEquality addLevel setElimination rename setEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}L1,L2:T  List.    ((\mforall{}x\mmember{}L1  @  L2.P[x])  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x\mmember{}L1.P[x])  \mwedge{}  (\mforall{}x\mmember{}L2.P[x]))



Date html generated: 2019_06_20-PM-00_41_36
Last ObjectModification: 2019_01_27-PM-07_11_20

Theory : list_0


Home Index