Nuprl Lemma : l_all_iff

[T:Type]. ∀L:T List. ∀[P:{x:T| (x ∈ L)}  ⟶ ℙ]. ((∀x∈L.P[x]) ⇐⇒ ∀x:T. ((x ∈ L)  P[x]))


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) l_member: (x ∈ l) list: List uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q l_member: (x ∈ l) exists: x:A. B[x] l_all: (∀x∈L.P[x]) nat: int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B decidable: Dec(P) or: P ∨ Q not: ¬A false: False uiff: uiff(P;Q) uimplies: supposing a cand: c∧ B subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True sq_stable: SqStable(P) squash: T
Lemmas referenced :  l_member_wf l_all_wf all_wf list_wf decidable__lt length_wf false_wf not-lt-2 less-iff-le add_functionality_wrt_le add-swap add-commutes le-add-cancel lelt_wf select_wf list-subtype sq_stable__le nat_wf select_member int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality functionExtensionality setEquality setElimination rename dependent_set_memberEquality functionEquality because_Cache universeEquality productElimination dependent_functionElimination unionElimination voidElimination independent_functionElimination independent_isectElimination addEquality natural_numberEquality isect_memberEquality voidEquality intEquality addLevel levelHypothesis equalityTransitivity equalitySymmetry imageMemberEquality baseClosed imageElimination hyp_replacement Error :applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}x\mmember{}L.P[x])  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:T.  ((x  \mmember{}  L)  {}\mRightarrow{}  P[x]))



Date html generated: 2016_10_21-AM-09_48_59
Last ObjectModification: 2016_07_12-AM-05_08_38

Theory : list_0


Home Index