Nuprl Lemma : list-subtype

[A:Type]. ∀[d:A List].  (d ∈ {a:A| (a ∈ d)}  List)


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) list: List uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: subtype_rel: A ⊆B or: P ∨ Q cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] squash: T sq_stable: SqStable(P) uiff: uiff(P;Q) and: P ∧ Q le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list int_subtype_base list-cases nil_wf l_member_wf product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add-commutes le_wf equal_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base cons_wf cons_member list_wf subtype_rel_list_set
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut thin lambdaFormation introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination lambdaEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry applyEquality because_Cache unionElimination setEquality promote_hyp hypothesis_subsumption productElimination isect_memberEquality voidEquality applyLambdaEquality imageMemberEquality baseClosed imageElimination addEquality dependent_set_memberEquality independent_pairFormation minusEquality intEquality instantiate cumulativity inlFormation universeEquality inrFormation

Latex:
\mforall{}[A:Type].  \mforall{}[d:A  List].    (d  \mmember{}  \{a:A|  (a  \mmember{}  d)\}    List)



Date html generated: 2018_05_21-PM-00_19_18
Last ObjectModification: 2018_05_19-AM-06_59_20

Theory : list_0


Home Index