Nuprl Lemma : cons_member

[T:Type]. ∀l:T List. ∀a,x:T.  ((x ∈ [a l]) ⇐⇒ (x a ∈ T) ∨ (x ∈ l))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) cons: [a b] list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  or: P ∨ Q rev_implies:  Q squash: T sq_stable: SqStable(P) uimplies: supposing a prop: nat: cand: c∧ B member: t ∈ T exists: x:A. B[x] implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] uall: [x:A]. B[x] l_member: (x ∈ l) subtract: m true: True less_than': less_than'(a;b) top: Top subtype_rel: A ⊆B false: False not: ¬A nequal: a ≠ b ∈  le: A ≤ B sq_type: SQType(T) guard: {T} so_apply: x[s] so_lambda: λ2x.t[x] uiff: uiff(P;Q) decidable: Dec(P) cons: [a b] select: L[n] less_than: a < b nat_plus: +
Lemmas referenced :  list_wf sq_stable__le select_wf cons_wf length_wf less_than_wf nat_wf minus-zero minus-add add-commutes condition-implies-le le-add-cancel zero-add add-zero istype-int istype-void add-associates add_functionality_wrt_le not-equal-2 not-lt-2 istype-false decidable__lt neg_assert_of_eq_int le_weakening int_subtype_base le_wf set_subtype_base subtype_base_sq assert_of_eq_int eq_int_wf decidable__assert length_of_cons_lemma le_weakening2 iff_weakening_equal subtype_rel_self le-add-cancel2 select_cons_tl true_wf squash_wf equal_wf add-swap minus-minus minus-one-mul-top minus-one-mul less-iff-le not-le-2 decidable__le subtract_wf length_wf_nat add_nat_plus add-subtract-cancel select-cons-tl
Rules used in proof :  universeEquality Error :unionIsType,  imageElimination baseClosed imageMemberEquality independent_functionElimination natural_numberEquality independent_isectElimination because_Cache cumulativity Error :inhabitedIsType,  Error :equalityIsType1,  hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution hypothesis extract_by_obid introduction cut Error :universeIsType,  Error :productIsType,  independent_pairFormation Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution minusEquality Error :isect_memberEquality_alt,  applyEquality addEquality voidElimination Error :dependent_set_memberEquality_alt,  equalitySymmetry equalityTransitivity Error :lambdaEquality_alt,  intEquality instantiate unionElimination dependent_functionElimination productElimination Error :inlFormation_alt,  Error :dependent_pairFormation_alt,  Error :inrFormation_alt

Latex:
\mforall{}[T:Type].  \mforall{}l:T  List.  \mforall{}a,x:T.    ((x  \mmember{}  [a  /  l])  \mLeftarrow{}{}\mRightarrow{}  (x  =  a)  \mvee{}  (x  \mmember{}  l))



Date html generated: 2019_06_20-PM-00_41_03
Last ObjectModification: 2019_02_27-PM-04_21_33

Theory : list_0


Home Index