Nuprl Lemma : select_cons_tl
∀[T:Type]. ∀[a:T]. ∀[as:T List]. ∀[i:ℤ].  ([a / as][i] = as[i - 1] ∈ T) supposing ((i ≤ ||as||) and 0 < i)
Proof
Definitions occuring in Statement : 
select: L[n]
, 
length: ||as||
, 
cons: [a / b]
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
top: Top
, 
le: A ≤ B
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
select-cons-tl, 
select_wf, 
subtract_wf, 
decidable__le, 
false_wf, 
not-le-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
decidable__lt, 
not-lt-2, 
length_wf, 
le-add-cancel-alt, 
le_wf, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
cumulativity, 
natural_numberEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_pairFormation, 
lambdaFormation, 
independent_functionElimination, 
addEquality, 
applyEquality, 
lambdaEquality, 
because_Cache, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality
Latex:
\mforall{}[T:Type].  \mforall{}[a:T].  \mforall{}[as:T  List].  \mforall{}[i:\mBbbZ{}].
    ([a  /  as][i]  =  as[i  -  1])  supposing  ((i  \mleq{}  ||as||)  and  0  <  i)
Date html generated:
2016_05_14-AM-06_36_30
Last ObjectModification:
2015_12_26-PM-00_34_03
Theory : list_0
Home
Index