Nuprl Lemma : select_member
∀[T:Type]. ∀L:T List. ∀i:ℕ||L||.  (L[i] ∈ L)
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
l_member: (x ∈ l)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
cand: A c∧ B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
nat: ℕ
Lemmas referenced : 
int_seg_subtype_nat, 
length_wf, 
false_wf, 
select_wf, 
sq_stable__le, 
less_than_wf, 
equal_wf, 
int_seg_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
dependent_pairFormation, 
cut, 
hypothesisEquality, 
applyEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
cumulativity, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
independent_pairFormation, 
setElimination, 
rename, 
productElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
because_Cache, 
productEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}i:\mBbbN{}||L||.    (L[i]  \mmember{}  L)
Date html generated:
2017_04_14-AM-08_37_19
Last ObjectModification:
2017_02_27-PM-03_28_48
Theory : list_0
Home
Index