Nuprl Lemma : select_member
∀[T:Type]. ∀L:T List. ∀i:ℕ||L||.  (L[i] ∈ L)
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l), 
select: L[n], 
length: ||as||, 
list: T List, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
l_member: (x ∈ l), 
exists: ∃x:A. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
cand: A c∧ B, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
sq_stable: SqStable(P), 
squash: ↓T, 
nat: ℕ
Lemmas referenced : 
int_seg_subtype_nat, 
length_wf, 
false_wf, 
select_wf, 
sq_stable__le, 
less_than_wf, 
equal_wf, 
int_seg_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
dependent_pairFormation, 
cut, 
hypothesisEquality, 
applyEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
cumulativity, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
independent_pairFormation, 
setElimination, 
rename, 
productElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
because_Cache, 
productEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}i:\mBbbN{}||L||.    (L[i]  \mmember{}  L)
Date html generated:
2017_04_14-AM-08_37_19
Last ObjectModification:
2017_02_27-PM-03_28_48
Theory : list_0
Home
Index