Nuprl Lemma : l_exists_wf

[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ ℙ].  ((∃x∈L. P[x]) ∈ ℙ)


Proof




Definitions occuring in Statement :  l_exists: (∃x∈L. P[x]) l_member: (x ∈ l) list: List uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  l_exists: (∃x∈L. P[x]) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: uimplies: supposing a int_seg: {i..j-} sq_stable: SqStable(P) implies:  Q lelt: i ≤ j < k and: P ∧ Q squash: T
Lemmas referenced :  list_wf sq_stable__le list-subtype l_member_wf select_wf length_wf int_seg_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality cumulativity hypothesisEquality hypothesis lambdaEquality applyEquality setEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination setElimination rename independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination axiomEquality functionEquality universeEquality isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}].    ((\mexists{}x\mmember{}L.  P[x])  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-AM-06_39_36
Last ObjectModification: 2016_01_14-PM-08_21_14

Theory : list_0


Home Index