Nuprl Lemma : int_formula_prop_or_lemma

y,x,f:Top.  (int_formula_prop(f;x "or" y) int_formula_prop(f;x) ∨ int_formula_prop(f;y))


Proof




Definitions occuring in Statement :  int_formula_prop: int_formula_prop(f;fmla) intformor: left "or" right top: Top all: x:A. B[x] or: P ∨ Q sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T int_formula_prop: int_formula_prop(f;fmla) intformor: left "or" right int_formula_ind: int_formula_ind
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule

Latex:
\mforall{}y,x,f:Top.    (int\_formula\_prop(f;x  "or"  y)  \msim{}  int\_formula\_prop(f;x)  \mvee{}  int\_formula\_prop(f;y))



Date html generated: 2016_05_14-AM-07_07_24
Last ObjectModification: 2015_12_26-PM-01_08_47

Theory : omega


Home Index