Nuprl Lemma : add-ipoly_wf

[p,q:iPolynomial()].  (add-ipoly(p;q) ∈ iPolynomial())


Proof




Definitions occuring in Statement :  add-ipoly: add-ipoly(p;q) iPolynomial: iPolynomial() uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] prop: pi2: snd(t) iMonomial: iMonomial() guard: {T} lelt: i ≤ j < k sq_stable: SqStable(P) uimplies: supposing a int_seg: {i..j-} false: False not: ¬A and: P ∧ Q imonomial-less: imonomial-less(m1;m2) squash: T implies:  Q all: x:A. B[x] iPolynomial: iPolynomial() member: t ∈ T uall: [x:A]. B[x] true: True less_than': less_than'(a;b) top: Top subtype_rel: A ⊆B subtract: m uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) le: A ≤ B ge: i ≥  nat: less_than: a < b nat_plus: + exists: x:A. B[x] cons: [a b] sq_type: SQType(T) int_nzero: -o ifthenelse: if then else fi  btrue: tt null: null(as) has-value: (a)↓ it: nil: [] add-ipoly: add-ipoly(p;q) bfalse: ff assert: b bnot: ¬bb unit: Unit bool: 𝔹 has-valueall: has-valueall(a) callbyvalueall: callbyvalueall pi1: fst(t) cand: c∧ B nequal: a ≠ b ∈  imonomial-le: imonomial-le(m1;m2) select: L[n]
Lemmas referenced :  iPolynomial_wf imonomial-less_wf all_wf int_seg_wf imonomial-le_wf assert_witness le_weakening2 length_wf less_than_transitivity2 sq_stable__le iMonomial_wf select_wf list_wf equal_wf add-ipoly_wf1 zero-mul add-mul-special not-lt-2 decidable__lt le_wf length_wf_nat add_nat_wf nat_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-ge-2 false_wf subtract_wf decidable__le less_than_wf ge_wf less_than_irreflexivity less_than_transitivity1 nat_properties int_seg_properties mul-swap mul-associates mul-commutes mul-distributes omega-shadow minus-zero mul-distributes-right two-mul one-mul le_reflexive int_subtype_base set_subtype_base non_neg_length product_subtype_list list-cases nequal_wf subtype_rel_self sorted_wf int_nzero_wf product_subtype_base list_subtype_base subtype_base_sq btrue_wf bool_subtype_base bool_wf list-value-type value-type-has-value cons_wf assert-bnot bool_cases_sqequal eqff_to_assert eqtt_to_assert bfalse_wf evalall-reduce int-valueall-type set-valueall-type product-valueall-type list-valueall-type valueall-type-has-valueall int-value-type eq_int_wf assert_of_eq_int length_of_cons_lemma istype-void istype-sqequal add-member-int_seg2 istype-less_than squash_wf true_wf select-cons-tl istype-false not-equal-2 add-is-int-iff not-le-2 le-add-cancel2 istype-le neg_assert_of_eq_int not-equal-implies-less int_nzero_properties intlex-antisym intlex_wf add-poly-lemma1 add-subtract-cancel lelt_wf le-add-cancel-alt iff_weakening_equal select_cons_tl trivial-equal decidable__equal_int le_antisymmetry_iff imonomial-less-transitive not-imonomial-le
Rules used in proof :  isect_memberEquality axiomEquality equalitySymmetry equalityTransitivity lambdaFormation baseClosed imageMemberEquality natural_numberEquality independent_isectElimination because_Cache intEquality voidElimination independent_pairEquality productElimination lambdaEquality sqequalRule imageElimination independent_functionElimination dependent_functionElimination hypothesis hypothesisEquality isectElimination extract_by_obid dependent_set_memberEquality rename thin setElimination sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution multiplyEquality voidEquality minusEquality applyEquality independent_pairFormation unionElimination addEquality intWeakElimination levelHypothesis addLevel promote_hyp sqequalIntensionalEquality dependent_pairFormation hypothesis_subsumption setEquality cumulativity instantiate sqleReflexivity callbyvalueReduce equalityElimination Error :inhabitedIsType,  Error :lambdaFormation_alt,  int_eqReduceTrueSq Error :isect_memberEquality_alt,  Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  Error :equalityIstype,  Error :dependent_set_memberEquality_alt,  Error :productIsType,  hyp_replacement Error :universeIsType,  closedConclusion int_eqReduceFalseSq baseApply universeEquality

Latex:
\mforall{}[p,q:iPolynomial()].    (add-ipoly(p;q)  \mmember{}  iPolynomial())



Date html generated: 2019_06_20-PM-00_45_35
Last ObjectModification: 2019_01_20-PM-01_14_57

Theory : omega


Home Index