Nuprl Lemma : istype-sqequal

[x,y:Base].  istype(x y)


Proof




Definitions occuring in Statement :  istype: istype(T) uall: [x:A]. B[x] base: Base sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  istype-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :universeIsType,  sqequalIntensionalEquality hypothesisEquality Error :inhabitedIsType,  cut introduction extract_by_obid hypothesis

Latex:
\mforall{}[x,y:Base].    istype(x  \msim{}  y)



Date html generated: 2019_06_20-AM-11_19_39
Last ObjectModification: 2018_10_16-PM-05_54_17

Theory : sqequal_1


Home Index