Nuprl Lemma : istype-sqequal
∀[x,y:Base].  istype(x ~ y)
Proof
Definitions occuring in Statement : 
istype: istype(T)
, 
uall: ∀[x:A]. B[x]
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
istype-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :universeIsType, 
sqequalIntensionalEquality, 
hypothesisEquality, 
Error :inhabitedIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis
Latex:
\mforall{}[x,y:Base].    istype(x  \msim{}  y)
Date html generated:
2019_06_20-AM-11_19_39
Last ObjectModification:
2018_10_16-PM-05_54_17
Theory : sqequal_1
Home
Index