Nuprl Lemma : imonomial-le_wf
∀[m1,m2:iMonomial()].  (imonomial-le(m1;m2) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
imonomial-le: imonomial-le(m1;m2)
, 
iMonomial: iMonomial()
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
imonomial-le: imonomial-le(m1;m2)
, 
iMonomial: iMonomial()
, 
pi2: snd(t)
Lemmas referenced : 
intlex_wf, 
iMonomial_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[m1,m2:iMonomial()].    (imonomial-le(m1;m2)  \mmember{}  \mBbbB{})
Date html generated:
2016_05_14-AM-07_00_13
Last ObjectModification:
2015_12_26-PM-01_12_21
Theory : omega
Home
Index