Nuprl Lemma : imonomial-le_wf

[m1,m2:iMonomial()].  (imonomial-le(m1;m2) ∈ 𝔹)


Proof




Definitions occuring in Statement :  imonomial-le: imonomial-le(m1;m2) iMonomial: iMonomial() bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T imonomial-le: imonomial-le(m1;m2) iMonomial: iMonomial() pi2: snd(t)
Lemmas referenced :  intlex_wf iMonomial_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin productElimination setElimination rename hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[m1,m2:iMonomial()].    (imonomial-le(m1;m2)  \mmember{}  \mBbbB{})



Date html generated: 2016_05_14-AM-07_00_13
Last ObjectModification: 2015_12_26-PM-01_12_21

Theory : omega


Home Index