Nuprl Lemma : imonomial-less-transitive

[m1,m2,m3:iMonomial()].  (imonomial-less(m1;m3)) supposing (imonomial-less(m2;m3) and imonomial-less(m1;m2))


Proof




Definitions occuring in Statement :  imonomial-less: imonomial-less(m1;m2) iMonomial: iMonomial() uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a imonomial-less: imonomial-less(m1;m2) and: P ∧ Q not: ¬A implies:  Q false: False iMonomial: iMonomial() pi2: snd(t) prop: uiff: uiff(P;Q) imonomial-le: imonomial-le(m1;m2) sq_type: SQType(T) all: x:A. B[x] guard: {T} subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  equal_wf list_wf assert_witness imonomial-le_wf imonomial-less_wf iMonomial_wf eqtt_to_assert subtype_base_sq list_subtype_base int_subtype_base equal-wf-base set_subtype_base sorted_wf subtype_rel_self intlex-antisym intlex-transitive
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin independent_pairFormation sqequalRule independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality because_Cache extract_by_obid isectElimination intEquality hypothesis setElimination rename independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry voidElimination independent_isectElimination lambdaFormation promote_hyp instantiate cumulativity applyEquality

Latex:
\mforall{}[m1,m2,m3:iMonomial()].
    (imonomial-less(m1;m3))  supposing  (imonomial-less(m2;m3)  and  imonomial-less(m1;m2))



Date html generated: 2017_04_14-AM-08_57_39
Last ObjectModification: 2017_02_27-PM-03_40_48

Theory : omega


Home Index