Nuprl Lemma : intlex-transitive
∀[l1,l2,l3:ℤ List].  (l1 ≤_lex l3 = tt) supposing (l2 ≤_lex l3 = tt and l1 ≤_lex l2 = tt)
Proof
Definitions occuring in Statement : 
intlex: l1 ≤_lex l2
, 
list: T List
, 
btrue: tt
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
intlex: l1 ≤_lex l2
, 
has-value: (a)↓
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
top: Top
, 
guard: {T}
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
bor: p ∨bq
, 
band: p ∧b q
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
cand: A c∧ B
, 
less_than': less_than'(a;b)
, 
subtract: n - m
, 
ge: i ≥ j 
Lemmas referenced : 
value-type-has-value, 
nat_wf, 
set-value-type, 
le_wf, 
int-value-type, 
length_wf_nat, 
equal-wf-base, 
bool_wf, 
list_subtype_base, 
int_subtype_base, 
list_wf, 
lt_int_wf, 
length_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
testxxx_lemma, 
le_weakening2, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
eq_int_wf, 
assert_of_eq_int, 
le_weakening, 
neg_assert_of_eq_int, 
btrue_neq_bfalse, 
decidable__lt, 
iff_imp_equal_bool, 
less_than_transitivity1, 
true_wf, 
assert_wf, 
iff_wf, 
squash_wf, 
iff_weakening_equal, 
decidable__equal_int, 
false_wf, 
not-equal-2, 
not-lt-2, 
add_functionality_wrt_le, 
add-associates, 
add-commutes, 
le-add-cancel, 
add-swap, 
intlex-aux_wf, 
and_wf, 
eq_int_eq_true, 
band_wf, 
less_than_transitivity2, 
set_subtype_base, 
non_neg_length, 
subtract_wf, 
minus-one-mul, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
add-zero, 
one-mul, 
nat_properties, 
intlex-aux-transitive, 
bor_wf, 
btrue_wf, 
or_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bor, 
assert_of_band
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
callbyvalueReduce, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
because_Cache, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_functionElimination, 
independent_pairFormation, 
addLevel, 
impliesFunctionality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
addEquality, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
equalityUniverse, 
levelHypothesis, 
sqequalIntensionalEquality, 
multiplyEquality, 
productEquality, 
inrFormation, 
orFunctionality
Latex:
\mforall{}[l1,l2,l3:\mBbbZ{}  List].    (l1  \mleq{}\_lex  l3  =  tt)  supposing  (l2  \mleq{}\_lex  l3  =  tt  and  l1  \mleq{}\_lex  l2  =  tt)
Date html generated:
2017_09_29-PM-05_49_33
Last ObjectModification:
2017_07_26-PM-01_37_46
Theory : list_0
Home
Index