Nuprl Lemma : intlex-transitive

[l1,l2,l3:ℤ List].  (l1 ≤_lex l3 tt) supposing (l2 ≤_lex l3 tt and l1 ≤_lex l2 tt)


Proof




Definitions occuring in Statement :  intlex: l1 ≤_lex l2 list: List btrue: tt bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a intlex: l1 ≤_lex l2 has-value: (a)↓ nat: so_lambda: λ2x.t[x] so_apply: x[s] prop: subtype_rel: A ⊆B all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q top: Top guard: {T} bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b false: False not: ¬A bor: p ∨bq band: p ∧b q le: A ≤ B decidable: Dec(P) iff: ⇐⇒ Q true: True rev_implies:  Q squash: T cand: c∧ B less_than': less_than'(a;b) subtract: m ge: i ≥ 
Lemmas referenced :  value-type-has-value nat_wf set-value-type le_wf int-value-type length_wf_nat equal-wf-base bool_wf list_subtype_base int_subtype_base list_wf lt_int_wf length_wf eqtt_to_assert assert_of_lt_int testxxx_lemma le_weakening2 eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf eq_int_wf assert_of_eq_int le_weakening neg_assert_of_eq_int btrue_neq_bfalse decidable__lt iff_imp_equal_bool less_than_transitivity1 true_wf assert_wf iff_wf squash_wf iff_weakening_equal decidable__equal_int false_wf not-equal-2 not-lt-2 add_functionality_wrt_le add-associates add-commutes le-add-cancel add-swap intlex-aux_wf and_wf eq_int_eq_true band_wf less_than_transitivity2 set_subtype_base non_neg_length subtract_wf minus-one-mul add-mul-special two-mul mul-distributes-right zero-mul add-zero one-mul nat_properties intlex-aux-transitive bor_wf btrue_wf or_wf iff_transitivity iff_weakening_uiff assert_of_bor assert_of_band
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution sqequalRule callbyvalueReduce extract_by_obid isectElimination thin hypothesis independent_isectElimination intEquality lambdaEquality natural_numberEquality hypothesisEquality because_Cache baseApply closedConclusion baseClosed applyEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry lambdaFormation unionElimination equalityElimination productElimination dependent_functionElimination voidElimination voidEquality dependent_pairFormation promote_hyp instantiate cumulativity independent_functionElimination independent_pairFormation addLevel impliesFunctionality imageElimination universeEquality imageMemberEquality addEquality dependent_set_memberEquality applyLambdaEquality setElimination rename equalityUniverse levelHypothesis sqequalIntensionalEquality multiplyEquality productEquality inrFormation orFunctionality

Latex:
\mforall{}[l1,l2,l3:\mBbbZ{}  List].    (l1  \mleq{}\_lex  l3  =  tt)  supposing  (l2  \mleq{}\_lex  l3  =  tt  and  l1  \mleq{}\_lex  l2  =  tt)



Date html generated: 2017_09_29-PM-05_49_33
Last ObjectModification: 2017_07_26-PM-01_37_46

Theory : list_0


Home Index