Nuprl Lemma : band_wf

[p,q:𝔹].  (p ∧b q ∈ 𝔹)


Proof




Definitions occuring in Statement :  band: p ∧b q bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T band: p ∧b q all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  eqtt_to_assert uiff_transitivity equal-wf-T-base bool_wf assert_wf bnot_wf not_wf eqff_to_assert assert_of_bnot bfalse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule hypothesisEquality Error :inhabitedIsType,  hypothesis Error :lambdaFormation_alt,  thin sqequalHypSubstitution unionElimination equalityElimination extract_by_obid isectElimination because_Cache productElimination independent_isectElimination baseClosed independent_functionElimination Error :equalityIsType1,  dependent_functionElimination equalityTransitivity equalitySymmetry axiomEquality Error :isect_memberEquality_alt,  Error :universeIsType

Latex:
\mforall{}[p,q:\mBbbB{}].    (p  \mwedge{}\msubb{}  q  \mmember{}  \mBbbB{})



Date html generated: 2019_06_20-AM-11_30_58
Last ObjectModification: 2018_10_06-AM-10_10_35

Theory : bool_1


Home Index