Nuprl Lemma : intlex-aux_wf

[l1:ℤ List]. ∀[l2:{as:ℤ List| ||as|| ||l1|| ∈ ℤ].  (intlex-aux(l1;l2) ∈ 𝔹)


Proof




Definitions occuring in Statement :  intlex-aux: intlex-aux(l1;l2) length: ||as|| list: List bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: subtype_rel: A ⊆B intlex-aux: intlex-aux(l1;l2) all: x:A. B[x] or: P ∨ Q nil: [] it: bool: 𝔹 unit: Unit cons: [a b] top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] exists: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q subtract: m le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True exposed-it: exposed-it btrue: tt less_than: a < b squash: T bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q so_lambda: λ2x.t[x] so_apply: x[s] nequal: a ≠ b ∈  decidable: Dec(P)
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf list_wf list_subtype_base int_subtype_base list-cases length_of_nil_lemma unit_wf2 product_subtype_list length_of_cons_lemma istype-void spread_cons_lemma le_weakening2 length_wf non_neg_length length_wf_nat le_antisymmetry_iff condition-implies-le minus-add istype-int minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-zero le-add-cancel lt_int_wf eqtt_to_assert assert_of_lt_int istype-top eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf eq_int_wf assert_of_eq_int set_subtype_base le_wf neg_assert_of_eq_int subtract-1-ge-0 le_weakening decidable__le istype-false not-le-2 less-iff-le add-associates add-swap le-add-cancel2 decidable__equal_int subtract_wf not-equal-2 minus-minus nat_wf add-mul-special two-mul mul-distributes-right zero-mul one-mul
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination Error :lambdaFormation_alt,  natural_numberEquality independent_isectElimination independent_functionElimination voidElimination Error :universeIsType,  Error :lambdaEquality_alt,  dependent_functionElimination Error :isect_memberEquality_alt,  axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  Error :setIsType,  intEquality Error :equalityIsType4,  baseApply closedConclusion baseClosed applyEquality Error :functionIsTypeImplies,  unionElimination Error :inlEquality_alt,  promote_hyp hypothesis_subsumption productElimination Error :dependent_pairFormation_alt,  sqequalIntensionalEquality addEquality because_Cache minusEquality Error :equalityIsType1,  equalityElimination lessCases axiomSqEquality independent_pairFormation imageMemberEquality imageElimination Error :equalityIsType2,  instantiate cumulativity int_eqReduceTrueSq int_eqReduceFalseSq Error :inrEquality_alt,  Error :dependent_set_memberEquality_alt,  multiplyEquality

Latex:
\mforall{}[l1:\mBbbZ{}  List].  \mforall{}[l2:\{as:\mBbbZ{}  List|  ||as||  =  ||l1||\}  ].    (intlex-aux(l1;l2)  \mmember{}  \mBbbB{})



Date html generated: 2019_06_20-PM-00_42_09
Last ObjectModification: 2018_10_07-PM-08_51_40

Theory : list_0


Home Index