Step
*
of Lemma
intlex-aux_wf
∀[l1:ℤ List]. ∀[l2:{as:ℤ List| ||as|| = ||l1|| ∈ ℤ} ]. (intlex-aux(l1;l2) ∈ 𝔹)
BY
{ (Assert ∀[n:ℕ]. ∀[l1,l2:{as:ℤ List| ||as|| = n ∈ ℤ} ]. (intlex-aux(l1;l2) ∈ 𝔹) BY
(InductionOnNat
THEN Auto
THEN RecUnfold `intlex-aux` 0
THEN Reduce 0
THEN Auto
THEN RepeatFor 2 (DVar `l1')
THEN All Reduce
THEN Auto
THEN (Assert 0 ≤ ||v|| BY
Auto)
THEN Auto
THEN BackThruSomeHyp
THEN All Reduce
THEN MemTypeCD
THEN Auto)) }
1
1. ∀[n:ℕ]. ∀[l1,l2:{as:ℤ List| ||as|| = n ∈ ℤ} ]. (intlex-aux(l1;l2) ∈ 𝔹)
⊢ ∀[l1:ℤ List]. ∀[l2:{as:ℤ List| ||as|| = ||l1|| ∈ ℤ} ]. (intlex-aux(l1;l2) ∈ 𝔹)
Latex:
Latex:
\mforall{}[l1:\mBbbZ{} List]. \mforall{}[l2:\{as:\mBbbZ{} List| ||as|| = ||l1||\} ]. (intlex-aux(l1;l2) \mmember{} \mBbbB{})
By
Latex:
(Assert \mforall{}[n:\mBbbN{}]. \mforall{}[l1,l2:\{as:\mBbbZ{} List| ||as|| = n\} ]. (intlex-aux(l1;l2) \mmember{} \mBbbB{}) BY
(InductionOnNat
THEN Auto
THEN RecUnfold `intlex-aux` 0
THEN Reduce 0
THEN Auto
THEN RepeatFor 2 (DVar `l1')
THEN All Reduce
THEN Auto
THEN (Assert 0 \mleq{} ||v|| BY
Auto)
THEN Auto
THEN BackThruSomeHyp
THEN All Reduce
THEN MemTypeCD
THEN Auto))
Home
Index