Nuprl Lemma : assert_of_band
∀p:𝔹. ∀q:⋂:↑p. 𝔹.  uiff(↑(p ∧b q);(↑p) ∧ (↑q))
Proof
Definitions occuring in Statement : 
band: p ∧b q
, 
assert: ↑b
, 
bool: 𝔹
, 
uiff: uiff(P;Q)
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
isect: ⋂x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
member: t ∈ T
, 
it: ⋅
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
band: p ∧b q
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
false: False
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
true: True
Lemmas referenced : 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
true_wf, 
it_wf, 
subtype_rel_self, 
assert_witness, 
assert_wf, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
Error :inhabitedIsType, 
hypothesis, 
thin, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
Error :dependent_pairFormation_alt, 
Error :equalityIsType1, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
because_Cache, 
voidElimination, 
Error :universeIsType, 
isectEquality, 
lambdaFormation, 
applyEquality, 
independent_pairFormation, 
Error :isect_memberFormation_alt, 
natural_numberEquality, 
independent_pairEquality, 
axiomEquality, 
Error :productIsType, 
isect_memberFormation, 
productEquality
Latex:
\mforall{}p:\mBbbB{}.  \mforall{}q:\mcap{}:\muparrow{}p.  \mBbbB{}.    uiff(\muparrow{}(p  \mwedge{}\msubb{}  q);(\muparrow{}p)  \mwedge{}  (\muparrow{}q))
Date html generated:
2019_06_20-AM-11_31_35
Last ObjectModification:
2018_09_28-PM-11_33_03
Theory : bool_1
Home
Index