Nuprl Lemma : iff_imp_equal_bool

[a,b:𝔹].  supposing ↑⇐⇒ ↑b


Proof




Definitions occuring in Statement :  assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] iff: ⇐⇒ Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: rev_implies:  Q false: False true: True bfalse: ff ifthenelse: if then else fi  assert: b btrue: tt it: unit: Unit bool: 𝔹
Lemmas referenced :  assert_wf iff_wf bool_wf bfalse_wf btrue_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut hypothesis sqequalRule Error :productIsType,  Error :functionIsType,  Error :universeIsType,  extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  voidElimination natural_numberEquality independent_functionElimination productElimination equalityElimination unionElimination

Latex:
\mforall{}[a,b:\mBbbB{}].    a  =  b  supposing  \muparrow{}a  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}b



Date html generated: 2019_06_20-AM-11_31_25
Last ObjectModification: 2018_09_26-AM-11_16_10

Theory : bool_1


Home Index