Nuprl Lemma : eq_int_eq_true

[i,j:ℤ].  (i =z j) tt supposing j ∈ ℤ


Proof




Definitions occuring in Statement :  eq_int: (i =z j) btrue: tt bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B implies:  Q assert: b ifthenelse: if then else fi  btrue: tt prop: guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q true: True
Lemmas referenced :  iff_imp_equal_bool eq_int_wf btrue_wf iff_functionality_wrt_iff assert_wf equal-wf-base int_subtype_base true_wf iff_weakening_uiff assert_of_eq_int iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination intEquality applyEquality sqequalRule independent_functionElimination because_Cache equalityTransitivity equalitySymmetry productElimination independent_pairFormation lambdaFormation natural_numberEquality Error :universeIsType,  isect_memberEquality axiomEquality Error :inhabitedIsType

Latex:
\mforall{}[i,j:\mBbbZ{}].    (i  =\msubz{}  j)  =  tt  supposing  i  =  j



Date html generated: 2019_06_20-AM-11_31_46
Last ObjectModification: 2018_09_26-AM-11_24_52

Theory : bool_1


Home Index