Nuprl Lemma : intlex-aux-transitive

[l1:ℤ List]. ∀[l2,l3:{as:ℤ List| ||as|| ||l1|| ∈ ℤ].
  (intlex-aux(l1;l3) tt) supposing (intlex-aux(l2;l3) tt and intlex-aux(l1;l2) tt)


Proof




Definitions occuring in Statement :  intlex-aux: intlex-aux(l1;l2) length: ||as|| list: List btrue: tt bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] set: {x:A| B[x]}  int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False and: P ∧ Q ge: i ≥  le: A ≤ B cand: c∧ B less_than: a < b squash: T guard: {T} uimplies: supposing a prop: or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q true: True rev_implies:  Q intlex-aux: intlex-aux(l1;l2) nil: [] it: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] cons: [a b] top: Top less_than': less_than'(a;b) not: ¬A colength: colength(L) sq_type: SQType(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] sq_stable: SqStable(P) subtract: m exists: x:A. B[x] uiff: uiff(P;Q) decidable: Dec(P) exposed-it: exposed-it bool: 𝔹 unit: Unit bfalse: ff bnot: ¬bb isl: isl(x) nequal: a ≠ b ∈ 
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf istype-less_than list-cases iff_imp_equal_bool intlex-aux_wf nil_wf istype-assert true_wf set_subtype_base list_wf equal_wf length_wf list_subtype_base int_subtype_base bool_wf istype-int product_subtype_list colength-cons-not-zero istype-void istype-nat colength_wf_list istype-false istype-le subtract-1-ge-0 subtype_base_sq nat_wf le_wf spread_cons_lemma sq_stable__le add-associates add-commutes add-swap zero-add length_of_cons_lemma length_of_nil_lemma le_weakening2 non_neg_length length_wf_nat istype-sqequal le_antisymmetry_iff condition-implies-le minus-add minus-one-mul minus-one-mul-top add_functionality_wrt_le add-zero le-add-cancel cons_wf subtract_wf add-mul-special two-mul mul-distributes-right zero-mul one-mul decidable__lt istype-top less_than_wf lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot iff_weakening_uiff assert_wf not-lt-2 less-iff-le decidable__equal_int bfalse_wf btrue_wf btrue_neq_bfalse eq_int_wf assert_of_eq_int not-equal-2 neg_assert_of_eq_int le-add-cancel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination independent_pairFormation productElimination imageElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination Error :universeIsType,  sqequalRule Error :lambdaEquality_alt,  dependent_functionElimination Error :isect_memberEquality_alt,  axiomEquality Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :functionIsTypeImplies,  intEquality unionElimination equalityTransitivity equalitySymmetry because_Cache Error :equalityIstype,  baseApply closedConclusion baseClosed applyEquality voidEquality sqequalBase Error :setIsType,  promote_hyp hypothesis_subsumption Error :dependent_set_memberEquality_alt,  instantiate cumulativity imageMemberEquality applyLambdaEquality Error :dependent_pairFormation_alt,  addEquality minusEquality multiplyEquality lessCases axiomSqEquality equalityElimination int_eqReduceTrueSq int_eqReduceFalseSq Error :productIsType,  hyp_replacement int_eqEquality

Latex:
\mforall{}[l1:\mBbbZ{}  List].  \mforall{}[l2,l3:\{as:\mBbbZ{}  List|  ||as||  =  ||l1||\}  ].
    (intlex-aux(l1;l3)  =  tt)  supposing  (intlex-aux(l2;l3)  =  tt  and  intlex-aux(l1;l2)  =  tt)



Date html generated: 2019_06_20-PM-00_42_33
Last ObjectModification: 2019_01_17-PM-04_26_10

Theory : list_0


Home Index