Nuprl Lemma : intlex-aux-transitive
∀[l1:ℤ List]. ∀[l2,l3:{as:ℤ List| ||as|| = ||l1|| ∈ ℤ} ].
  (intlex-aux(l1;l3) = tt) supposing (intlex-aux(l2;l3) = tt and intlex-aux(l1;l2) = tt)
Proof
Definitions occuring in Statement : 
intlex-aux: intlex-aux(l1;l2)
, 
length: ||as||
, 
list: T List
, 
btrue: tt
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
and: P ∧ Q
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
cand: A c∧ B
, 
less_than: a < b
, 
squash: ↓T
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
or: P ∨ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
rev_implies: P 
⇐ Q
, 
intlex-aux: intlex-aux(l1;l2)
, 
nil: []
, 
it: ⋅
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cons: [a / b]
, 
top: Top
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
colength: colength(L)
, 
sq_type: SQType(T)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
sq_stable: SqStable(P)
, 
subtract: n - m
, 
exists: ∃x:A. B[x]
, 
uiff: uiff(P;Q)
, 
decidable: Dec(P)
, 
exposed-it: exposed-it
, 
bool: 𝔹
, 
unit: Unit
, 
bfalse: ff
, 
bnot: ¬bb
, 
isl: isl(x)
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
istype-less_than, 
list-cases, 
iff_imp_equal_bool, 
intlex-aux_wf, 
nil_wf, 
istype-assert, 
true_wf, 
set_subtype_base, 
list_wf, 
equal_wf, 
length_wf, 
list_subtype_base, 
int_subtype_base, 
bool_wf, 
istype-int, 
product_subtype_list, 
colength-cons-not-zero, 
istype-void, 
istype-nat, 
colength_wf_list, 
istype-false, 
istype-le, 
subtract-1-ge-0, 
subtype_base_sq, 
nat_wf, 
le_wf, 
spread_cons_lemma, 
sq_stable__le, 
add-associates, 
add-commutes, 
add-swap, 
zero-add, 
length_of_cons_lemma, 
length_of_nil_lemma, 
le_weakening2, 
non_neg_length, 
length_wf_nat, 
istype-sqequal, 
le_antisymmetry_iff, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
minus-one-mul-top, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
cons_wf, 
subtract_wf, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
one-mul, 
decidable__lt, 
istype-top, 
less_than_wf, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
not-lt-2, 
less-iff-le, 
decidable__equal_int, 
bfalse_wf, 
btrue_wf, 
btrue_neq_bfalse, 
eq_int_wf, 
assert_of_eq_int, 
not-equal-2, 
neg_assert_of_eq_int, 
le-add-cancel2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
Error :lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
independent_pairFormation, 
productElimination, 
imageElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
Error :universeIsType, 
sqequalRule, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
axiomEquality, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
Error :functionIsTypeImplies, 
intEquality, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
Error :equalityIstype, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
voidEquality, 
sqequalBase, 
Error :setIsType, 
promote_hyp, 
hypothesis_subsumption, 
Error :dependent_set_memberEquality_alt, 
instantiate, 
cumulativity, 
imageMemberEquality, 
applyLambdaEquality, 
Error :dependent_pairFormation_alt, 
addEquality, 
minusEquality, 
multiplyEquality, 
lessCases, 
axiomSqEquality, 
equalityElimination, 
int_eqReduceTrueSq, 
int_eqReduceFalseSq, 
Error :productIsType, 
hyp_replacement, 
int_eqEquality
Latex:
\mforall{}[l1:\mBbbZ{}  List].  \mforall{}[l2,l3:\{as:\mBbbZ{}  List|  ||as||  =  ||l1||\}  ].
    (intlex-aux(l1;l3)  =  tt)  supposing  (intlex-aux(l2;l3)  =  tt  and  intlex-aux(l1;l2)  =  tt)
Date html generated:
2019_06_20-PM-00_42_33
Last ObjectModification:
2019_01_17-PM-04_26_10
Theory : list_0
Home
Index