Nuprl Lemma : btrue_neq_bfalse

¬tt ff


Proof




Definitions occuring in Statement :  bfalse: ff btrue: tt bool: 𝔹 not: ¬A equal: t ∈ T
Definitions unfolded in proof :  not: ¬A implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] ifthenelse: if then else fi  btrue: tt bfalse: ff uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] guard: {T} true: True false: False
Lemmas referenced :  equal_wf bool_wf btrue_wf bfalse_wf ifthenelse_wf subtype_base_sq int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis applyEquality lambdaEquality hypothesisEquality intEquality natural_numberEquality equalityUniverse levelHypothesis sqequalRule instantiate cumulativity independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination promote_hyp

Latex:
\mneg{}tt  =  ff



Date html generated: 2016_05_13-PM-03_55_30
Last ObjectModification: 2015_12_26-AM-10_53_13

Theory : bool_1


Home Index