Nuprl Lemma : assert_of_bor
∀p:𝔹. ∀[q:𝔹]. uiff(↑(p ∨bq);(↑p) ∨ (↑q))
Proof
Definitions occuring in Statement : 
bor: p ∨bq
, 
assert: ↑b
, 
bool: 𝔹
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
member: t ∈ T
, 
it: ⋅
, 
btrue: tt
, 
bor: p ∨bq
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
true: True
, 
or: P ∨ Q
, 
prop: ℙ
, 
bfalse: ff
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
false: False
Lemmas referenced : 
assert_wf, 
true_wf, 
or_wf, 
assert_witness, 
false_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
equalityElimination, 
sqequalRule, 
isect_memberFormation, 
independent_pairFormation, 
cut, 
introduction, 
axiomEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
rename, 
inlFormation, 
natural_numberEquality, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
because_Cache, 
independent_functionElimination, 
inrFormation, 
voidElimination
Latex:
\mforall{}p:\mBbbB{}.  \mforall{}[q:\mBbbB{}].  uiff(\muparrow{}(p  \mvee{}\msubb{}q);(\muparrow{}p)  \mvee{}  (\muparrow{}q))
Date html generated:
2016_05_13-PM-03_57_05
Last ObjectModification:
2015_12_26-AM-10_51_47
Theory : bool_1
Home
Index