Nuprl Lemma : assert_of_bor

p:𝔹. ∀[q:𝔹]. uiff(↑(p ∨bq);(↑p) ∨ (↑q))


Proof




Definitions occuring in Statement :  bor: p ∨bq assert: b bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] bool: 𝔹 unit: Unit member: t ∈ T it: btrue: tt bor: p ∨bq ifthenelse: if then else fi  assert: b uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a true: True or: P ∨ Q prop: bfalse: ff implies:  Q guard: {T} false: False
Lemmas referenced :  assert_wf true_wf or_wf assert_witness false_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution unionElimination thin equalityElimination sqequalRule isect_memberFormation independent_pairFormation cut introduction axiomEquality equalityTransitivity hypothesis equalitySymmetry rename inlFormation natural_numberEquality lemma_by_obid isectElimination hypothesisEquality because_Cache independent_functionElimination inrFormation voidElimination

Latex:
\mforall{}p:\mBbbB{}.  \mforall{}[q:\mBbbB{}].  uiff(\muparrow{}(p  \mvee{}\msubb{}q);(\muparrow{}p)  \mvee{}  (\muparrow{}q))



Date html generated: 2016_05_13-PM-03_57_05
Last ObjectModification: 2015_12_26-AM-10_51_47

Theory : bool_1


Home Index