Nuprl Lemma : not-imonomial-le

a,b:iMonomial().  ((¬↑imonomial-le(a;b))  imonomial-less(b;a))


Proof




Definitions occuring in Statement :  imonomial-less: imonomial-less(m1;m2) imonomial-le: imonomial-le(m1;m2) iMonomial: iMonomial() assert: b all: x:A. B[x] not: ¬A implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iMonomial: iMonomial() imonomial-le: imonomial-le(m1;m2) pi2: snd(t) imonomial-less: imonomial-less(m1;m2) and: P ∧ Q cand: c∧ B member: t ∈ T prop: uall: [x:A]. B[x] not: ¬A uimplies: supposing a sq_type: SQType(T) guard: {T} false: False subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) squash: T true: True iff: ⇐⇒ Q rev_implies:  Q or: P ∨ Q
Lemmas referenced :  not_wf assert_wf imonomial-le_wf iMonomial_wf subtype_base_sq list_wf list_subtype_base int_subtype_base equal-wf-base set_subtype_base sorted_wf subtype_rel_self eqtt_to_assert intlex_wf equal_wf squash_wf true_wf bool_wf intlex-reflexive btrue_wf iff_weakening_equal intlex-total
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin sqequalRule cut independent_pairFormation hypothesis introduction extract_by_obid isectElimination hypothesisEquality independent_functionElimination instantiate cumulativity intEquality independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry voidElimination because_Cache applyEquality lambdaEquality setElimination rename imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed unionElimination

Latex:
\mforall{}a,b:iMonomial().    ((\mneg{}\muparrow{}imonomial-le(a;b))  {}\mRightarrow{}  imonomial-less(b;a))



Date html generated: 2017_04_14-AM-08_57_43
Last ObjectModification: 2017_02_27-PM-03_40_51

Theory : omega


Home Index