Nuprl Lemma : not-imonomial-le
∀a,b:iMonomial().  ((¬↑imonomial-le(a;b)) 
⇒ imonomial-less(b;a))
Proof
Definitions occuring in Statement : 
imonomial-less: imonomial-less(m1;m2)
, 
imonomial-le: imonomial-le(m1;m2)
, 
iMonomial: iMonomial()
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iMonomial: iMonomial()
, 
imonomial-le: imonomial-le(m1;m2)
, 
pi2: snd(t)
, 
imonomial-less: imonomial-less(m1;m2)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
false: False
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
Lemmas referenced : 
not_wf, 
assert_wf, 
imonomial-le_wf, 
iMonomial_wf, 
subtype_base_sq, 
list_wf, 
list_subtype_base, 
int_subtype_base, 
equal-wf-base, 
set_subtype_base, 
sorted_wf, 
subtype_rel_self, 
eqtt_to_assert, 
intlex_wf, 
equal_wf, 
squash_wf, 
true_wf, 
bool_wf, 
intlex-reflexive, 
btrue_wf, 
iff_weakening_equal, 
intlex-total
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
cut, 
independent_pairFormation, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_functionElimination, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
because_Cache, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
unionElimination
Latex:
\mforall{}a,b:iMonomial().    ((\mneg{}\muparrow{}imonomial-le(a;b))  {}\mRightarrow{}  imonomial-less(b;a))
Date html generated:
2017_04_14-AM-08_57_43
Last ObjectModification:
2017_02_27-PM-03_40_51
Theory : omega
Home
Index