Nuprl Lemma : intlex-total

as,bs:ℤ List.  ((↑as ≤_lex bs) ∨ (↑bs ≤_lex as))


Proof




Definitions occuring in Statement :  intlex: l1 ≤_lex l2 list: List assert: b all: x:A. B[x] or: P ∨ Q int:
Definitions unfolded in proof :  all: x:A. B[x] intlex: l1 ≤_lex l2 has-value: (a)↓ uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q top: Top assert: b ifthenelse: if then else fi  or: P ∨ Q true: True prop: band: p ∧b q subtype_rel: A ⊆B bfalse: ff exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb false: False not: ¬A bor: p ∨bq nequal: a ≠ b ∈  le: A ≤ B less_than': less_than'(a;b) intlex-aux: intlex-aux(l1;l2) nil: [] cons: [a b] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] exposed-it: exposed-it less_than: a < b squash: T decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m
Lemmas referenced :  value-type-has-value nat_wf set-value-type le_wf int-value-type length_wf_nat lt_int_wf length_wf bool_wf eqtt_to_assert assert_of_lt_int testxxx_lemma assert_wf bor_wf eq_int_wf assert_of_eq_int intlex-aux_wf equal-wf-base list_subtype_base int_subtype_base equal_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf list_wf neg_assert_of_eq_int not-equal-2 not-lt-2 add_functionality_wrt_le add-swap add-commutes le-add-cancel list_induction all_wf or_wf nil_wf list-cases length_of_nil_lemma length_of_cons_lemma cons_wf product_subtype_list spread_cons_lemma top_wf less_than_transitivity2 le_weakening2 less_than_irreflexivity less_than_transitivity1 le_weakening unit_wf2 decidable__equal_int false_wf le_antisymmetry_iff condition-implies-le add-associates minus-add minus-one-mul minus-one-mul-top zero-add le-add-cancel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule callbyvalueReduce cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination intEquality lambdaEquality natural_numberEquality hypothesisEquality because_Cache unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality inlFormation dependent_set_memberEquality baseApply closedConclusion baseClosed applyEquality independent_functionElimination dependent_pairFormation promote_hyp instantiate cumulativity inrFormation addEquality functionEquality rename hypothesis_subsumption lessCases isect_memberFormation sqequalAxiom independent_pairFormation imageMemberEquality imageElimination int_eqReduceTrueSq int_eqReduceFalseSq inrEquality axiomEquality minusEquality

Latex:
\mforall{}as,bs:\mBbbZ{}  List.    ((\muparrow{}as  \mleq{}\_lex  bs)  \mvee{}  (\muparrow{}bs  \mleq{}\_lex  as))



Date html generated: 2017_09_29-PM-05_49_38
Last ObjectModification: 2017_07_26-PM-01_37_50

Theory : list_0


Home Index