Nuprl Lemma : intlex-reflexive

[l1,l2:ℤ List].  l1 ≤_lex l2 tt supposing l1 l2 ∈ (ℤ List)


Proof




Definitions occuring in Statement :  intlex: l1 ≤_lex l2 list: List btrue: tt bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} intlex: l1 ≤_lex l2 has-value: (a)↓ nat: so_lambda: λ2x.t[x] so_apply: x[s] squash: T prop: true: True subtype_rel: A ⊆B iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q band: p ∧b q ifthenelse: if then else fi  btrue: tt
Lemmas referenced :  subtype_base_sq list_wf list_subtype_base int_subtype_base value-type-has-value nat_wf set-value-type le_wf int-value-type length_wf_nat bool_wf bool_subtype_base equal_wf squash_wf true_wf eq_int_eq_true length_wf subtype_rel_self iff_weakening_equal equal-wf-base lt_int_wf btrue_wf bor_tt_simp bor_wf intlex-aux-reflexive
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality hypothesis independent_isectElimination dependent_functionElimination hypothesisEquality independent_functionElimination sqequalRule callbyvalueReduce lambdaEquality natural_numberEquality because_Cache applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed productElimination isect_memberEquality axiomEquality

Latex:
\mforall{}[l1,l2:\mBbbZ{}  List].    l1  \mleq{}\_lex  l2  =  tt  supposing  l1  =  l2



Date html generated: 2019_06_20-PM-00_43_33
Last ObjectModification: 2018_08_31-PM-01_25_22

Theory : list_0


Home Index