Nuprl Lemma : intlex-reflexive
∀[l1,l2:ℤ List].  l1 ≤_lex l2 = tt supposing l1 = l2 ∈ (ℤ List)
Proof
Definitions occuring in Statement : 
intlex: l1 ≤_lex l2
, 
list: T List
, 
btrue: tt
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
intlex: l1 ≤_lex l2
, 
has-value: (a)↓
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
Lemmas referenced : 
subtype_base_sq, 
list_wf, 
list_subtype_base, 
int_subtype_base, 
value-type-has-value, 
nat_wf, 
set-value-type, 
le_wf, 
int-value-type, 
length_wf_nat, 
bool_wf, 
bool_subtype_base, 
equal_wf, 
squash_wf, 
true_wf, 
eq_int_eq_true, 
length_wf, 
subtype_rel_self, 
iff_weakening_equal, 
equal-wf-base, 
lt_int_wf, 
btrue_wf, 
bor_tt_simp, 
bor_wf, 
intlex-aux-reflexive
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
hypothesis, 
independent_isectElimination, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
sqequalRule, 
callbyvalueReduce, 
lambdaEquality, 
natural_numberEquality, 
because_Cache, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[l1,l2:\mBbbZ{}  List].    l1  \mleq{}\_lex  l2  =  tt  supposing  l1  =  l2
Date html generated:
2019_06_20-PM-00_43_33
Last ObjectModification:
2018_08_31-PM-01_25_22
Theory : list_0
Home
Index