Nuprl Lemma : intlex-aux-reflexive
∀[l1,l2:ℤ List].  intlex-aux(l1;l2) = tt supposing l1 = l2 ∈ (ℤ List)
Proof
Definitions occuring in Statement : 
intlex-aux: intlex-aux(l1;l2), 
list: T List, 
btrue: tt, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
so_apply: x[s], 
implies: P ⇒ Q, 
intlex-aux: intlex-aux(l1;l2), 
nil: [], 
it: ⋅, 
btrue: tt, 
bool: 𝔹, 
all: ∀x:A. B[x], 
cons: [a / b], 
so_lambda: λ2x y.t[x; y], 
top: Top, 
so_apply: x[s1;s2], 
less_than: a < b, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
true: True, 
squash: ↓T, 
not: ¬A, 
false: False, 
prop: ℙ, 
guard: {T}, 
sq_type: SQType(T)
Lemmas referenced : 
list_induction, 
equal-wf-base, 
bool_wf, 
list_subtype_base, 
int_subtype_base, 
list_wf, 
it_wf, 
subtype_rel_union, 
unit_wf2, 
spread_cons_lemma, 
top_wf, 
less_than_anti-reflexive, 
less_than_wf, 
subtype_base_sq, 
and_wf, 
equal_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
intEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
inlEquality, 
voidEquality, 
voidElimination, 
lambdaFormation, 
rename, 
dependent_functionElimination, 
isect_memberEquality, 
int_eqReduceTrueSq, 
lessCases, 
sqequalAxiom, 
independent_pairFormation, 
natural_numberEquality, 
imageMemberEquality, 
imageElimination, 
productElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
instantiate, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination
Latex:
\mforall{}[l1,l2:\mBbbZ{}  List].    intlex-aux(l1;l2)  =  tt  supposing  l1  =  l2
Date html generated:
2017_09_29-PM-05_50_11
Last ObjectModification:
2017_07_26-PM-01_39_16
Theory : list_0
Home
Index