Nuprl Lemma : bor_tt_simp

[u:𝔹]. u ∨btt tt


Proof




Definitions occuring in Statement :  bor: p ∨bq btrue: tt bool: 𝔹 uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] bor: p ∨bq bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  btrue_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid hypothesis Error :universeIsType,  Error :isect_memberFormation_alt,  sqequalRule sqequalHypSubstitution unionElimination thin equalityElimination

Latex:
\mforall{}[u:\mBbbB{}].  u  \mvee{}\msubb{}tt  =  tt



Date html generated: 2019_06_20-AM-11_31_01
Last ObjectModification: 2018_09_26-AM-11_14_53

Theory : bool_1


Home Index