Nuprl Lemma : add_functionality_wrt_eq

[i1,i2,j1,j2:ℤ].  ((i1 i2) (j1 j2) ∈ ℤsupposing ((i2 j2 ∈ ℤand (i1 j1 ∈ ℤ))


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] add: m int: equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a prop:
Lemmas referenced :  equal_wf
Rules used in proof :  addEquality hypothesis sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesisEquality because_Cache isect_memberFormation introduction sqequalRule isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[i1,i2,j1,j2:\mBbbZ{}].    ((i1  +  i2)  =  (j1  +  j2))  supposing  ((i2  =  j2)  and  (i1  =  j1))



Date html generated: 2016_05_13-PM-03_30_53
Last ObjectModification: 2015_12_26-AM-09_46_25

Theory : arithmetic


Home Index