Nuprl Lemma : decidable__all_int_seg

i,j:ℤ.  ∀[F:{i..j-} ⟶ ℙ{u}]. ((∀k:{i..j-}. Dec(F[k]))  Dec(∀k:{i..j-}. F[k]))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q so_apply: x[s] member: t ∈ T so_lambda: λ2x.t[x] prop: decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B exists: x:A. B[x] not: ¬A false: False guard: {T}
Lemmas referenced :  decidable__exists_int_seg not_wf int_seg_wf decidable__not all_wf decidable_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation sqequalHypSubstitution sqequalRule cut lemma_by_obid dependent_functionElimination thin hypothesisEquality isectElimination lambdaEquality instantiate applyEquality hypothesis independent_functionElimination cumulativity functionEquality universeEquality intEquality unionElimination inrFormation inlFormation because_Cache productElimination voidElimination dependent_pairFormation

Latex:
\mforall{}i,j:\mBbbZ{}.    \mforall{}[F:\{i..j\msupminus{}\}  {}\mrightarrow{}  \mBbbP{}\{u\}].  ((\mforall{}k:\{i..j\msupminus{}\}.  Dec(F[k]))  {}\mRightarrow{}  Dec(\mforall{}k:\{i..j\msupminus{}\}.  F[k]))



Date html generated: 2016_05_13-PM-03_47_49
Last ObjectModification: 2015_12_26-AM-09_57_55

Theory : call!by!value_2


Home Index